Tag Archives: Ethereum

Top 50 of Crypto Mining – June 2019

Today, June 14, 2019, we released the second biannual list of Top 50 cryptocurrency mining pools.

We do this in conjunction with the Top 500 supercomputing list that is released twice a year, in June and November. That list has been a matter of national pride for the US, Japan, China, and many other countries.

Cryptocurrency mining is a specialized form of supercomputing, producing billions of dollars of economic value per year.

In the Information Age, money has become information. Bitcoin is energy converted to information and encapsulated as secure immutable transactions on a time chain. This is money in the Internet, that we call Money 3.0. Currently it is primarily a store of value, a sort of digital gold, but it continues to grow use cases as a medium of exchange, and unit of account.

Cryptocurrency mining operations are large-scale, run on clusters, but also consist of highly decentralized pools that anyone can join and contribute their equipment to the effort, for proportionate rewards. Most mining is done on custom ASIC computing rigs, highly optimized for the relevant crypto consensus algorithm.

Using statistics readily available on the hashing rates and block production rates for the large mining pools, we can tabulate the economic value produced by these pools.

We consider only mined coins, that is, those that use some type of Proof of Work algorithm such as Bitcoin’s Nakamoto consensus.

We do not consider coins created with other types of consensus mechanisms, since they require no significant supercomputer-class computation. This includes coins produced through premining, Proof of Stake, distributed Byzantine Fault Tolerance and the like since supercomputing resources are not involved.

While there are a number of lists that provide hash rates and block production rates for pools mining a single coin, our lists are the first aggregation of which we are aware.

This raises the question as to how to compare mined coins that have radically different hashing rates and whose consensus algorithms, although often similar to Bitcoin conceptually, differ in the details.

We settled on the economic value of the mined coins that are produced. This enables us to make comparisons across coins when rank ordering the list of mining pools.

We compare the dollar value of a day’s mining from a given pool, with that of other pools, across the top eight mined cryptocurrencies.

The top 10 mined coins have market caps above $0.5 billion dollars, and the #1 coin, Bitcoin, as of our snapshot taken on May 30, 2019, had a market cap of $154 billion.

When we rank order the top 50 mining pools we find that the top eight mined coins in economic value are: Bitcoin (BTC), Ethereum (ETH), Litecoin (LTC), Bitcoin Cash (BCH), Zcash  (ZEC), Bitcoin SV (BSV), Dash (DASH), and Monero (XMR). All of these except Monero are ASIC-friendly, and production is dominated by ASIC miners and clusters. Monero relies on GPUs.

For Bitcoin, Ethereum, and Litecoin we have used 30 day averages as of May 30, 2019 for block production and hash rates; for the other coins 7 day average data was available.

From Table 1  below, which is across all pools, not just the Top 50, we see that total annual economic value run rate (extrapolated from the recent average daily values) is about $8.6 billion. About 2/3 of the economic value created is from Bitcoin production alone, with about $15 million produced per day recently. Ethereum amounts to around one-quarter of that at almost $4 million per day. The next six coins add another $4 million daily. Overall around $24 million per day is currently being mined from all pools.

Table 1: Top 8 Mined Coins (all mining pools, not just Top 50)

Coin Algo New / day Hash Rate Price 5/30/19 US$ Mined per Day M$ Yearly M$
Bitcoin SHA256 1800 47.1 Exa 8701 15.662 5,717
Ethereum Ethash 13,600 172 Tera 284 3.862 1,410
Litecoin Scrypt 14,825 352 Tera 118 1.743 636
Bitcoin Cash SHA256 1800 1.36 Exa 469 0.844 308
Zcash Equihash 7200 4 Giga 87 0.626 228
Bitcoin SV SHA256 1800 2.03 Peta 222 0.400 146
Dash X11 1693 1.68 Peta 172 0.292 107
Monero CryptoNight 1934 329 Mega 95.1 0.184 67
Totals



23.61 8,619

The locations of top mining pools can be multi-country. The next Table summarizes the major host countries for the Top 50 pools; China, the US, and Hong Kong account for 70% of the top 50 pools and almost all of the top 10 operators. China alone is responsible for nearly half of the annual value produced by the Top 50 pools. The Mixed category includes various combinations of US, China, the EU, Russia, or other Asian or European countries. This category has grown as Chinese operators begin to move to other geographies, as a result of pressure from the government to constrain cryptocurrency mining in China.

Table 2. Host Countries, Top 50 Pools

Country # Top Pools Daily M$ Annual M$
China 18 10.717 3911.7
US 11 4.77 1742.5
Hong Kong 6 2.77 1009.6
Mixed 12 2.69 980.4
Other 3 1.18 430.0
Totals 50 22.12 8,074

Table 3: Top 10 Pool Operators (aggregated results)

MultiPools Coins Number Daily M$ Annual M$ Country
BTC(dot) com BTC, BCH 2 3.06 1115 China
F2Pool BTC, ETH, ZEC, BSV, LTC 5 2.76 1007 China
Antpool BTC, LTC, ZEC, BCH, DASH 5 2.38 868 Hong Kong
Poolin BTC, ZEC, LTC, BSV 4 2.26 825 China
SlushPool BTC, ZEC 2 1.62 592 US
BTC.Top BTC, LTC, BCH 3 1.47 537 China
ViaBTC BTC, LTC,BCH 3 1.34 488 US
Huobi.Pool BTC, ETH 2 0.69 251 China
NanoPool ETH, XMR 2 0.50 182 US, EU, Asia
Bitcoin(dot)com BTC, BCH 2 0.34 124 US
Totals
30 16.41 5,990

We have aggregated, for the top 10 operators, their results across all of the top eight coins, and summarized in Table 3. Some operators mine two different coins, others mine as many as five of the top eight. These pools account for, when broken out by coin, 30 of the entries in our Top 50 list. 

The #1 operator is BTC.com based in China, and it produces $3 million a day of economic value. F2Pool, Antpool, and Poolin each produce over $2 million of cryptocurrency per day. These  large operators are responsible for $6 billion of the $8 billion annual production by the top 50 pools. Three of the five largest operators are in China, one is in Hong Kong, and one is in the US.

The winners in this race, for this second list, are Bitcoin, naturally, with BTC.com again as the top pool, and China as the host country for the most top mining pools, including both #1 and #2 positions. Hong Kong has the #3 pool. The US has the second largest number of mining pools.

The economic value of mining has increased substantially. In the first list of November, 2018 we looked at the Top 30 pools, responsible for some $5.5 billion of annual run rate of mining. This new list of Top 50 pools indicates $8.1 billion of annual cryptocurrency creation (even the Top 30 for this list amounts to well over $7 billion).

We intend to update this list again in November, 2019. Suggestions and comments may be sent to: stephen.perrenod@orionx.net

A presentation with the full Top 50 list is available at SlideShare.net

References:

Overall: coinmarketcap.com, coinwarz.com, cryptoslate.com

BTC: btc.com 

ETH: btc.com, etherscan.io

BCH: btc.com, cash.coin.dance 

LTC, ZEC, XMR, DASH: miningpoolstats.stream

Cryptocurrency topics: orionx.net/blog

Advertisements

Crypto Supercomputers: First Aggregated Ranking

Working with OrionX, we have just published the first aggregated list of cryptocurrency supercomputer mining pools, ranked by the economic value generated.

I have recorded a podcast about this list with Rich Brueckner, President, InsideHPC. You can listen here: https://insidehpc.com/2018/11/announcing-new-cryptosuper500-list/

A related slide presentation with a complete set of tables is available here: https://www.slideshare.net/mobile/insideHPC/announcing-the-new-cryptosuper500-list

The list is inspired by the Top500 supercomputer list that is released twice a year at the major supercomputer trade shows and conferences held each June in Germany (ISC) and each November in the US (SC).

That list is based on the performance of Linpack, a floating point intensive benchmark that solves a very large system of linear equations.

Supercomputers are based in a single location. They are very large clusters of general purpose CPU-based nodes, often augmented with GPUs, and frequently employing specialized interconnects.

Cryptocurrency mining is embarrassingly parallel. Many nodes can be racing simultaneously to solve the same cryptographic puzzle for the block reward. Mining pools may be centralized, but more likely they are decentralized to various degrees. Mining pools often have many contributors located in many countries, so even the concept of a host nation associated with the pool is fuzzy.

And the hardware employed is typically specialized ASICs or FPGAs, as well as the GPUs frequently found in traditional supercomputing simulation of science and engineering problems.

With mined cryptocurrencies, we must take a different approach and look at economic value.

For this initial list we looked at the top dozen cryptocurrencies by money supply, which is usually called market cap, and that is simply the number of coins created by a certain date, and the coin price on that date.

Of the top dozen, just half of those or 6 coins, are mined: Bitcoin, Ethereum, Litecoin, Bitcoin Cash, Monero, and Dash. Other coins are generated by premining, airdrops, or consensus algorithms that avoid mining. As a result they are centralized to varying degrees and presumably less secure.

We chose October 30, 2018 to gather prices, supply, block production, and other statistics. This was prior to the Bitcoin Cash fork into two coins, so only the initial coin is considered for the first list.

Among mined coins, a range of mining consensus algorithms are used. Differing cryptographic hashing protocols may be used. Time windows and block rewards vary. Hashing rates have a tremendous range across the set of coins, from MHash/s with Monero to ExaHash/s with Bitcoin.

Thus we cannot compare across coins based on hashing rates and block rewards per se. Instead we look at economic value. For a given coin, one can rank order by blocks produced.

We ask what is the daily value of a certain coin produced by a given mining pool? How many coins at what price? We took daily averages for the prior week, and where we had better data, for the higher value coins, we used the prior month average daily rate instead. We then extrapolated the annualized value based on the average daily rate.

We compiled statistics for the 30 largest pools on a per coin basis. We also aggregated results for pool operators that produced more than one type of coin.

The first table is a table of average daily and estimated annualized production in millions of USD for the top coins. (With the very recent price slump following the Bitcoin Cash fork, the numbers would now be lower by about 1/4 if prices do not recover for a while). About $4 billion of Bitcoin is mined (minted) per year, and around $1 billion of Ethereum. Litecoin, Bitcoin Cash, and Monero collectively contribute around  $400 million (Dash did not make the cut).

Table 1: Top 5 Mined Coins

Coin

# Top Pools

Daily M$

Annualized M$

Bitcoin

17

11.31

4,129

Ethereum

5

2.77

1,010

Litecoin

5

0.64

234

Bitcoin Cash

2

0.38

140

Monero

1

0.10

37

Totals

30

15.21

5,550

Next is a table of the top half dozen pool operators, combining different coin types if they are mining more than one of the top coins. Three are in China, one in Hong Kong, and two in the U.S.

Table 2: Top Pool Operators (aggregated across top coins)

Top 6 Operators (across coins)

# Top Pools

Daily M$

Annualized M$

Country

BTC.com

1

1.901 694

China

Antpool

2

1.747

638

Hong Kong

F2Pool

3

1.585

579

China

ViaBTC

2

1.329 485

USA

BTC.Top

2

1.222

446

China

Slushpool

1

1.215

444

USA

Total

11

9.00

3,285

Bitcoin has its own decentralized, open source, version of a central bank and a clearing house system embedded in the Nakamoto consensus. Bitcoin is presently an emerging economy with over $1 trillion in annual transactions (GDP, gross decentralized product), supported by a very economical and efficient seigniorage of about $4 billion in mining block rewards, or less than 0.4%.

The indicated inflation rate at present is about 4% in supply, but in about 18 months the block reward will have its third halving. This will decrease the block reward to 6.25 Bitcoin from its current 12.5 coins. The inflation rate will drop below 2%.

This is not like your Federal Reserve that issues forecasts and goals. Recently the Fed has been pushing to increase inflation to 2%, and happy that they achieved the increase.

With Bitcoin this decrease in inflation will definitely happen, come hell or high water; it’s math, it’s baked in to the Nakamoto consensus. Relative to the US dollar and fiat currencies in general, Bitcoin will be disinflationary going forward.

The next list will be announced in June, 2019, and we can begin tracking developments in the cryptocurrency space over time.

Evolutionary Forks and Dividends

What is a fork?

It is early days in evolutionary terms for cryptocurrency. Bitcoin has not been around even a decade. Ethereum has only been here for a few years. The respective economies of these and other cryptocurrencies have been growing at triple digit percentage rates.

A given blockchain can be thought of as a continuing line of a particular species. A new blockchain, e.g. Ethereum with new attributes is a new species of cryptocurrency. A fork in a blockchain, such as the recent Bitcoin Cash, is also a new species, but perhaps one can say that it belongs to the same genus.

Mayr’s concept of species is that of representatives of the same breeding population. They are in some sense on the same continual chain.

A fork is an evolutionary branch in response to environmental pressure. The pressure arises due to the developing needs of the ecosystem for cryptocurrencies overall and for individual cryptocurrencies.

img_0553

Pressure

The pressure that gives rise to evolution in the cryptocurrency ecosystem arises from the need to scale cryptocurrency to higher transaction rates and to more diverse use cases. For example, there is the very general use case of smart contracts, that led to the creation of Ethereum.

How new currencies are created or are forked results from the technological requirements and how those are interpreted and implemented by particular members of the development community. This is a political arena since miners, developers, exchanges, merchants, and other groups have different interests.

We have just had the Bitcoin Cash fork and are now facing possible forks for Bitcoin Gold and Segwit2x (Segwit was adopted without a fork in August).

It is difficult to determine which fork or species will be the most successful in the long run; but the original or main branch can have an advantage. Overall forks can be seen as strengthening the ecosystem as a whole since total value seems to rise after forks. After the Bitcoin Cash (BCH) fork the original Bitcoin (BTC) increased in value, and one could also collect the BCH on a one per one BTC held basis as a dividend. 

More generally, this has been borne out by the continually increasing market capitalization of the set of cryptocurrencies, currently having reached around $160 billion (roughly a Buffet plus a Gates).

For investors in cryptocurrency one can view forks as special dividends. Those who held Bitcoin through the Bitcoin Cash fork received a dividend of several hundred dollars per BTC. Sometimes numbered prints or copies are valuable as well.

DMRkGFIWsAE7pZy.jpg-large.jpeg

Above is not our view, but that of @BitcoinWrld

What you do (hold, sell all, sell half) with your dividends is up to you and your views on individual forks; we make no recommendations here. But the dividends are there to receive, along with possible capital appreciation as the cryptocurrency economy continues to grow rapidly.

Ethereum: Smarter than a Fifth Grader?

Ethereum is described in Wikipedia as an “an open-source, public, blockchain-based distributed computing platform featuring smart contract functionality“.

How does it differ from Bitcoin? Well Bitcoin is open-source, public, distributed, and block-chain based. The difference is principally found in the terms “computing platform” and “smart contract functionality”. And there are other differences as well.

Ethereum is only two years old. It was the brainchild of wunderkind Vitalik Buterin, a Bitcoin developer, and while initial funds for the project were raised in mid-2014, the network went live in mid-2015. A foundation under Swiss law manages Ethereum.

The motivation was to have better scaling than Bitcoin, both horizontally, in terms of transaction speed, and vertically, in terms of use cases supported (implemented via smart contracts). It also has a better specified development plan, with 0, 1, and 2 versions of the software having been implemented, and version 3 (Metropolis) currently in testing.

It has been a great success, and Ether, the coin of Ethereum, now has the number two market cap among all cryptocurrencies at around $29 billion. Its value has risen dramatically during 2017, rising from $8 to $300.

 

256px-Ethereum_logo_2014.svg.png

Ethereum logo CC-BY-3.0

Contracts

There are two types of accounts in Etherland. One can have a regular cryptocurrency account, or an account can represent a smart contract. There is a virtual machine (EVM) that is said to be “Turing complete” and that supports multiple scripting languages in which contract rules can be specified.

The idea of smart contracts has been around for over two decades; blockchain with broad programmability on the chain provides a very useful technology for their implementation.

Smart contracts allow value to be exchanged between agents without existing trusted relationships. Sort of like escrow, but much more streamlined. The basic idea is to cut out the expense and complications associated with middlemen.

Use cases being explored for such smart contracts include:

  • Real estate leases or purchases
  • Securities settlement
  • Supply chain management
  • Governance, including voting
  • Intellectual property protection

The number of currently existing use cases is few at present, however, and they tend to be simple and related to the Ether coin itself. Some have argued that smart contracts are much harder to implement in practice than many imagine. A recent interesting one is Prism Exchange, which allows you to hold a variety of altcoins across multiple exchanges from a single application.

Mining

Ether is much quicker to mine than Bitcoin, and can process 25 transactions per second. Transaction fees are also much lower than Bitcoin, around 8 times lower currently. Blocks are generated every 12 seconds, as opposed to the 10 minute target with Bitcoin.

Like Bitcoin, Ether is mined via Proof of Work, but the intent is to move to Proof of Stake (some measure of ownership) over time. A different cryptographic hash problem, Ethash, is solved, and with this hash Ether does not benefit greatly from mining with ASICs and is therefore accessible to CPU and especially to GPU mining. “Ethash PoW is memory hard, making it basically ASIC resistant.”

Basically the algorithm is designed to consume memory bandwidth and to be GPU-friendly. So it is good news for Nvidia and AMD and Intel.

Enterprise Ethereum Alliance

The Enterprise Ethereum Alliance has grown to over 150 organizations as members and includes some of the most important technology companies and largest banks. Its purpose is to address enterprise requirements for smart contracts and blockchains. The founding members are shown in the graphic below. Mastercard and Cisco are two major companies who have also joined recently.

Banks, in particular, have interest in permissioned blockchains, so that they can retain control of their customer relationships. There is a natural tension between open distributed trust of the blockchain and centralized trust that banks provide today.

It is an exciting time. How blockchain will be deployed by the financial industry, and how it will disrupt the industry are open questions. Smart contracts allow blockchain to be even more disruptive because they provide the tools for disintermediation. Jamie Dimon may not want his traders to trade Bitcoin, but he sure wants a seat at the Ethereum “smart contracts” table.

0C76B597-FC6A-4BAD-A067-6A5731E0B49E